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Abstract Simulation of the temperature distribution

during the Pulse Electrochemical Machining (PECM)

process provides information on system design and

guidelines for practical use. The pulses that are applied to

the PECM system have to be described on a time scale that

can be orders of magnitude smaller than the time scale on

which the thermal effects evolve. If the full detail of the

applied pulses has to be taken into account, the time

accurate calculation of the temperature distribution in

PECM can become a computationally very expensive

procedure. A different approach is used by time averaging

the heat sources of the system. Performing this, the time

steps used during the calculations are no longer dictated by

the pulse characteristics. Using this approach, computa-

tionally very cheap, yet satisfying results can be obtained.

In previous work of the authors, the hybrid calculation and

the Quasi Steady State ShortCut (QSSSC) were introduced.

This method allows to perform simplified calculations

while getting satisfactory results. The method introduces

errors however, which were quantified using analytical

solutions and found to be acceptable. The results applied

only to rectangular pulses. In this work, the more general

case of arbitrary pulse forms is considered using a spectral

approach.
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Abbreviations

1D One dimensional

ECM Electrochemical machining

PECM Pulse electrochemical machining

QSS Quasi steady state

QSSSC Quasi steady state shortcut

SS Steady state

List of symbols

A Pulse scale factor (K)

Bi Biot number ð¼ hH
k Þð�Þ

Cp Heat capacity (J kg-1 K-1)

Fo Fourier number ð¼ a0t
H2Þð�Þ

h Heat transfer coefficient (W m-2 K-1)

H Characteristic size electrode (m)

J Current density (A m-2)

k Thermal conductivity (W m-1 K-1)

n Spectral component index (–)

Pdl Heat density produced in the double layer

(W m-2)

Pbulk Heat density produced in the bulk (W m-3)

t Time (s)

t0 Time (s)

T Pulse period (s)

T0 Dimensionless pulse period (–)

v Scalar velocity (m s-1)

v Velocity vector (m s-1)

x Distance (m)

x0 Dimensionless distance (–)

a Duty cycle (–)

a0 Thermal diffusivity (m2 s-1)

g Overpotential (V)

h Relative temperature (K)

h Averaged temperature (K)
~h Temperature ripple (K)
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hdecay Decaying temperature (K)

H Temperature (K)

H? Reference temperature (K)

H* Electrolyte temperature (K)

k̂n Transcendental coefficients (–)

q Density (kg m-3)

r Electrical conductivity (S m-1)

s Time constant (s)

x Angular frequency (s-1)

w Pulse delay (s)

1 Introduction

Electrochemical Machining (ECM) is a manufacturing

process based on the controlled anodic dissolution of a

metal at large current densities (in the range of 1 A mm-2).

An electrolyte is used to carry away produced heat, among

other reaction products.

Despite its advantages, some difficulties still trouble the

application of ECM. One important issue is the lack of

quantitative simulation software to predict the tool shape

and machining parameters necessary to produce a given

work-piece profile [1–3]. The most complete model needs

to deal with the effects of the fluid flow, gas evolution, heat

generation, the electrochemical processes at the electrodes,

the transport of the species involved and all this while the

electrode shape changes. The work reported below makes a

contribution in incorporating heat generation in the model,

and calculating the temperature distributions.

Pulse Electrochemical Machining (PECM) involves the

application of current or voltage pulses. One wishes to

apply pulses for reasons of accuracy and surface quality

[3–6]. The issue of heating of the electrolyte is of primary

importance for the determination of the limiting conditions

in ECM [5–9].

Steady State (SS) temperature distribution calculations

have been performed by Clark [8], Loutrel [9] and Kozak

[7]. Time accurate calculations of temperature distribution

during PECM have already been performed by Kozak [4,

5]. In [4, 5], the pulses are considered to be independent of

each other, and thus no accumulation of heat over multiple

periods is encountered. Cases where there was accumula-

tion of heat in the system during multiple pulses, have been

performed in previous work of the authors [10]. It was

shown that, in order to determine in advance whether the

heat produced during multiple pulses is going to accumu-

late or not, the time scales present in the system have to be

studied.

To simulate electrochemical processes with current

pulses, one has to perform calculations with boundary

conditions that vary in time. By applying a time stepping

algorithm, all the variable distributions are calculated in

time. The applied pulses have to be described on a time

scale that can be orders of magnitude smaller than the time

scale on which the thermal effects evolve. This means that

a lot of timesteps would have to be calculated to perform a

satisfactory thermal simulation, which would be a com-

putationally very expensive procedure.

By averaging the heat production in the system, it is

possible to calculate temperature evolutions with timesteps

that are not dictated by the time scale of the pulses. It also

provides the possibility of calculating a SS. However, plain

averaging is inadequate in the system under consideration,

because of the very broad spectrum of possible time scales

present (see also [10]). While averaging might be necessary

to handle the largest time scales, the smaller time scales

may still be very important relative to the pulse period.

Plain averaging would eliminate all the small time scale

effects, which would make it impossible to perform accu-

rate simulations.

To solve this problem the hybrid calculation was

introduced in previous work of the authors [11]. The hybrid

calculation is a method where initially averaged heat

sources are applied, and at the time of interest, pulsed heat

sources are applied. The QSSSC—a special case of the

hybrid calculation—consists of using the averaged SS as a

starting state, and applying pulses afterwards. The hybrid

calculation, which is an approximative method, introduces

errors in the solution. It was shown for rectangular pulses

that this error is always of acceptable magnitude when the

necessary measures are taken [11].

During actual numerical calculations, it is necessary to

calculate far enough to judge wether the approximative

method is satisfactory. To avoid these unnecessary calcu-

lations, the knowledge obtained in this paper is very useful.

Numerical calculations using the hybrid technique were

performed in [12] for rectangular pulses.

In this work the hybrid method is studied while applying

arbitrary pulse shapes. A general formulation is made,

which applies for any possible pulse shape. Two specific

pulse shapes are considered for further investigations: a

full-wave rectified sine and a half-wave rectified sine, see

Fig. 1a and b. The externally applied voltage or current

pulses will result in heat pulses in the double layers and in

the electrolyte bulk. Due to the nonlinear relations the heat

pulse shapes will change a little bit and hence a slightly

different spectrum will be obtained. This distortion is

however too complex to be considered under general cir-

cumstances, and is neglected.

The measures which have to be taken to reduce the error

made with the approximative hybrid method, is by delaying

the applied pulses in an intelligent way, by a certain

amount w. For the two considered pulse shapes, analytical

formulae for optimal values of w are presented in this
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work. Also, a function E is defined to quantify how well the

QSS is approximated, by using the QSSSC.

2 Mathematical model

The temperature distribution in the system is calculated

using a convection-diffusion equation with heat sources:

qCp
oH
ot
þ qCpv � rH ¼ r � krH

� �
þ Pbulk: ð1Þ

Joule heating in the bulk of both the electrolyte and the

electrodes is considered, where

Pbulk ¼
J2

r
: ð2Þ

Heat dissipation in the double layer, where [9]

Pdl ¼ gJ; ð3Þ

is also taken into account. Pdl is imposed as a heat flux at

the electrode surfaces that are the boundaries of two

domains: the electrodes and the electrolyte. The electrodes

are cooled by convection. The boundaries of the electrodes,

which are not contiguous to the electrolyte, are considered

thermal insulators. This choice is justified by the fact that

essentially all of the heat generated in the system must be

carried away by the electrolyte [9].

3 Analytical solutions of simplified problems

Instead of solving Eq. 1 numerically for specific cases, an

analytical approach will be performed to obtain very gen-

eral results. Interesting conclusions will be drawn here,

which will be extrapolated to the numerically solved case.

Two subsystems are considered: conduction in the elec-

trode, and convection in the electrolyte.

3.1 Transient conduction in a 1D slab

One electrode is considered in this system. Heat density

Pdl(t) will be produced at the contact surface with the

electrolyte. Heat production in the electrode will be

neglected, because of the typically very high electrical

conductivity of the metal electrodes, and hence the very

low heat production. The electrode is cooled by convec-

tion. The temperature distribution will be considered in one

dimension only (1D).

Part of the produced heat Pdl(t) will be removed by

the electrolyte, and the other part will heat up the

electrode. It was shown in [11] that the system, in which

there is convective cooling into a medium at temperature

H? with a heat transfer coefficient h and simultaneous

heating Pdl(t) at the interface, is actually equivalent to

the same system being heated by convection by a
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Fig. 1 Pulse shapes and their

spectra. (A = 1 K)
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medium at temperature H�ðtÞ ¼ PdlðtÞ=hþH1: The

latter situation will be considered in the rest of this work

for easier formulation.

From the absolute temperature H, the relative temper-

ature h can be derived, using

hðtÞ ¼ HðtÞ �H1: ð4Þ

Starting from the side of the electrode which is insulated,

the distance x is measured.

Using the simplifications mentioned above, Eq. 1 sim-

plifies to

oh
ot
¼ a0

o2h
ox2

: ð5Þ

An arbitrary pulse shape can be written by means of a

Fourier series. Hence the electrolyte temperature evolution

will be written as

h�ðtÞ ¼
X1

n¼0

h�n cosðnxt þ /nÞ; ð6Þ

where hn
* and /n can be calculated when the pulse shape is

defined, and where

x ¼ 2p
T
: ð7Þ

The spectrum for a full-wave rectified sine is:

h�0 ¼ 2A
p

h�1 ¼ 0

h�n ¼ 2A
p
ð�1Þnþ1

1�n2 n ¼ 2; 3; 4; . . .
/n ¼ 0 n ¼ 0; 1; 2; . . .

8
>><

>>:
ð8Þ

The spectrum for a half-wave rectified sine is:

h�0 ¼ A
p

h�1 ¼ A
2

h�n ¼ A ð�1Þnþ1

pð1�n2Þ n ¼ 2; 3; 4; . . .

/n ¼ 0 n ¼ 0; 2; 3; . . .
/1 ¼ � p

2

8
>>>>><

>>>>>:

ð9Þ

The spectrum of a rectangular pulse is:

h�0 ¼ Aa
h�n ¼ 2A

pn j sinðapnÞj n ¼ 1; 2; 3; . . .
/0 ¼ 0

/n ¼ atan2ð�1; tan�1ðapnÞÞ n ¼ 1; 2; 3; . . .

8
>><

>>:
ð10Þ

The atan2(y, x) function computes the principal value of

the arc tangent of y/x, using the signs of both arguments to

determine the quadrant of the return value.

The temperature evolution in the 1D slab is then (based

on the result from [13])

hðx; tÞ ¼ hðx; tÞ þ ~hðx; tÞ þ hdecayðx; tÞ; ð11Þ

where the averaged component hðx; tÞ is

hðx; tÞ ¼ h�0
X1

k¼1

bkðxÞð1� e�t=skÞ; ð12Þ

the ripple ~hðx; tÞ (with zero average) is

~hðx; tÞ ¼
X1

n¼1

h�nBi
M0;n

M01;n
cosðnxt þ /n þ c0;n � c1;nÞ; ð13Þ

and the decaying contribution hdecay(x, t) is

hdecayðx; tÞ ¼ �
X1

n¼1

h�n
X1

k¼1

bkðxÞ

� cosð/n � atan2ðnxsk; 1ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2x2s2

k

p e�t=sk ; ð14Þ

with

M0;neic0;n ¼ coshðx00nx0Þcosðx00nx0Þþ i sinhðx00nx0Þ sinðx00nx0Þ;
ð15Þ

M01;neic1;n ¼x00n sinhðx00nÞcosðx00nÞ �x00n coshðx00nÞ sinðx00nÞ
þ Bi coshðx00nÞ cosðx00nÞ þ i½x00n sinhðx00nÞ cosðx00nÞ
þ x00n coshðx00nÞ sinðx00nÞ þBi sinhðx00nÞ sinðx00nÞ�;

ð16Þ

where

x00n ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nxH2

2a0

r

; ð17Þ

x0 ¼ x

H
; ð18Þ

i ¼
ffiffiffiffiffiffiffi
�1
p

; ð19Þ

Bi ¼ hH

k
; ð20Þ

bkðxÞ ¼
2 sin k̂k

k̂k þ sin k̂k cos k̂k

cos k̂kx0
� �

; ð21Þ

where k̂k are the successive roots of the transcendental

equation

cot k̂n ¼
k̂n

Bi
; ð22Þ

and where

sk ¼
H2

a0k̂2
k

: ð23Þ

It is possible to combine averaged boundary conditions

and pulse boundary conditions in one calculation. These

calculations are called hybrid [11]. Starting from t = 0, the

averaged heat sources are applied, and after time t = t*,

pulses are applied (possibly delayed by w). It can be shown

that the temperature evolution is composed of the averaged

794 J Appl Electrochem (2009) 39:791–798

123



component hðx; tÞ; a ripple ~hðx; t � t�Þ and a decaying

component hdecay(x, t-t*) where the two latter start from

the time t = t*:

hhybridðx; tÞ ¼ hðx; tÞ þ ~hðx; t � t�Þ þ hdecayðx; t � t�Þ:
ð24Þ

A particularly interesting case, is when t* ? ?. The

starting state at t = t* is then the averaged SS. This

situation is called the Quasi Steady State ShortCut

(QSSSC). When performing the QSSSC, it is convenient

to start the pulsed calculation from t = 0, while applying

the averaged SS as initial state. Note that in this case, the

averaged temperature reduces to hðx; tÞ ¼ h�avðxÞ:

hQSSSCðx; tÞ ¼ h�avðxÞ þ ~hðx; tÞ þ hdecayðx; tÞ: ð25Þ

When the electrode initially starts heating up, the

decaying component is naturally present, cfr. Eq. 11.

Using the approximative hybrid method, a significant

reduction in numerical time stepping can be obtained.

When we apply the hybrid calculation, and we start pulsing

at t = t*, the presence of the decaying component (cfr.

Eqs. 24 and 25) is not natural at all. The decaying

component hdecay should have started already at t = 0,

instead of at t = t*, and chances are that it would have

largely decayed or even totally disappeared at t = t*. The

presence of the decaying component hdecay(x,t) troubles the

approximative hybrid method, and introduces errors.

Assume that at the time of interest t = t* the decaying

component hdecay in the full calculation would be already

very small or even zero. The hybrid method would then

yield good approximative results, if it would be possible to

eliminate hdecay(x, t) during the hybrid calculation.

The decaying component hdecay(x, t) can be manipulated

by delaying the pulses in time with an amount w. It can

easily be shown that when the pulse is delayed by w that

h�ðt � wÞ ¼
X1

n¼1

h�n cosðnxt þ /n � nxwÞ ð26Þ

and hence to delay the pulse by w, one needs to replace the

phases /n by /n-nxw in expressions 6, 13 and 14.

The optimal value for w, written w*, can then be cal-

culated by minimizing |hdecay(x, t)| in Eq. 14, and

calculating for which w this occurs. This is an optimization

problem. To simplify, only the component k = 1 is con-

sidered. This component is not necessarily the largest in

amplitude, but it is always the slowest one to damp out.

When the spectral content of the pulse shape is relatively

low, another simplification can be done: the optimization

problem can be limited to the most important spectral

component. This approach is very pragmatic, but it does

have the advantage that it delivers a practical closed form

expression for w*. This pragmatic approach proves to be

very sufficient in this work. For the case of the full-wave

rectified sine the major spectral component is at double

frequency (n = 2) and the optimal pulse delay is then

w� ¼ 1

2x
3p
2
� atan2ð2xs1; 1Þ

� �
: ð27Þ

For the case of the half-wave rectified sine the major

spectral component is at pulse base frequency (n = 1) and

the optimal pulse delay is

w� ¼ 1

x
p� atan2ðxs1; 1Þð Þ: ð28Þ

For slow thermal systems, where the first and largest time

constant s1 is very large compared to the period T, the

optimal pulse delay simplifies to

wlim ¼ lim
T
s1
!0

w� ¼ T

4
; ð29Þ

for both the full-wave rectified and the half-wave rectified

sine.

For rectangular pulses the spectral content can be fairly

large, especially when the duty cycle a becomes small.

When determining w* it is not justified to limit the cal-

culation to only one spectral component. One has to

consider all the spectral components that are substantially

contributing. In previous work [11] an optimal pulse delay

for rectangular pulses was obtained:

w� ¼ s1 ln a
1� eT=s1

1� eaT=s1

� �
: ð30Þ

Performing the optimization on Eq. 14 delivers the same

result, but expression 30 has the advantage to be in a closed

form, and is superior for practical use.

To illustrate the formulae above, some examples are

shown. The temperature evolutions are calculated for a

case where x 0 = 0.99, T 0 = 10-3.8 and Bi = 103, where a

half-wave rectified sine was applied. T 0 is the dimension-

less period and is defined as

T 0 ¼ a0T
H2

: ð31Þ

By not delaying the pulses in time, the results from Fig. 2

are obtained. By delaying the pulses with w*, the results

from Fig. 3 are obtained. It can be seen that by delaying the

pulses with w*, hdecay(x, t) during the first on-time can be

reduced strongly. The time in Figs. 2 and 3 is expressed in

the dimensionless time Fo, which is defined as

Fo ¼ a0t
H2

: ð32Þ

The impact of the undesirable hdecay(x, t) will be quan-

tified from here. Only the QSSSC will be studied. The

smaller hdecay(x, t), the more accurate the QSSSC
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approximates the real QSS. The difference between the

QSSSC and the QSS, will be quantified with the function E

(in %), which is defined as

Ej ¼
R

dj
hQSSSCðx; tÞ � hQSSðx; tÞ
�� ��dt

R
dj

hQSSðx; tÞdt
100

¼
R

dj
hdecayðx; tÞ
�� ��dt
R

dj
hQSSðx; tÞdt

100; ð33Þ

where the integrals are calculated over dj, which is the jth

on-time. The integration domain is limited to the on-times,

because this is the only interval of interest when per-

forming calculations for ECM. During the on-time of the

pulse, the actual shape change of the workpiece occurs,

which is the ultimate goal for simulations in ECM. The

states during the off-times are of no primary importance. E

is mainly a function of Bi, T 0, x 0 and the pulse shape. Two

additional parameters are the number of on-time j, and w.

The error during the first on-time, E1, is shown in Fig. 4 for

a half-wave rectified sine, x 0 = 0.99, with w = 0, and in

Fig. 5 for the same setup, but with w = w*. It can be seen

that in Fig. 5 the values for E1 are significantly lower. If the

optimal pulse delay w* would have been calculated using

all spectral components, the zone for which log Bi \ 0

would be equal to zero in Fig. 5. The simplification of the

calculation of w* (only taking into account the one most

important spectral component) leaves an error of a few

percents in this case.

A more than useful amount of figures like Figs. 4 and 5

can be produced. To be able to draw a general conclusion

about the errors introduced by the approximative method,

the worst case values of E encountered will be summarized

in a table. For a full-wave rectified sine, the worst case

values can be seen in Table 1. For a half-wave rectified

sine, the worst case values can be seen in Table 2.

With the full-wave rectified sine pulsing, it can be seen

in Table 1 that the errors introduced by the decaying

component are not very large. Delaying the pulses in time

with a delay w* does not dramatically reduce the error

further. The pulse delaying does not have a great impact

with the full-wave rectified sine pulsing. This is because of

the fairly large DC component, and the first important

spectral component being at double base frequency

(n = 2), while there is a zero component at base frequency.

With the half-wave rectified sine pulsing, it can be seen

in Table 2 that the worst case value of E, encountered with
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w = 0, is about 41%, which is not acceptable. Calculating

until the second on-time during the QSSSC, we could still

encounter a maximum E2 of about 10%, which is still

unacceptable. By delaying the pulses with w = w* the

worst case values of E are strongly reduced. It can be seen

from Table 2 that the maximum error E1 is about 3%,

which is already acceptable, since in many cases the

uncertainties on the thermal parameters of the system are

also of this order. Calculating until the second on-time

gives a maximum E2 of about 0.5%, which is quite

satisfactory.

For rectangular pulses, the method in this work can be

used to reproduce the results from former work of the

authors [11]. However, due to the high spectral content of

rectangular pulses, the method in this work is not ideal. For

rectangular pulses specifically, the method from [11] will

outperform the formulation in this work.

3.2 Convection in the electrolyte

Because in ECM the convection velocity is usually very

high, convection is the main mode of transport in the

electrolyte. If only convection and bulk heating is consid-

ered and the problem is reduced to 1D, Eq. 1 simplifies to a

transport equation with a source

v
oh
ox
þ oh

ot
¼ Pbulk

qCp
¼ P�ðtÞ: ð34Þ

The solution h(x, t) in the flow channel is the surface

tangent to the characteristic direction vector (v, 1, P*(t)) in

the (x, t, h) space, according to Strauss [14]. For the full-

wave rectified sine, P*(t) is defined in time as

P�ðtÞ ¼ P�j sinðxt0Þj: ð35Þ

To provide the possibility of a pulse delay w, t0 = t-w is

used. For the half-wave rectified sine, P*(t) is defined in

time as

P�ðtÞ ¼ P� sinðxt0Þ for iT � t0\ðiþ 1
2
ÞT;

0 for ðiþ 1
2
ÞT � t0\ðiþ 1ÞT ;

	
ð36Þ

with i the number of the period.

Other condition to obey are the initial condition

h(x, 0) = 0, and the boundary condition h(0, t) = 0. Hav-

ing all this information, it is possible to obtain the

temperature solution in the flow channel. This solution can

be shown graphically, but for brevity this is not included in

this paper. In [11] the solution is shown for rectangular

pulses. The solutions for a full-wave rectified sine and a

half-wave rectified sine are similar. The same observations

made in [11] are made with the pulse shapes in this work.

The averaged temperature evolution hðx; tÞ is calculated

by choosing the source term P*(t) from Eq. 34 equal to the

averaged value hP*(t) i.
When using the averaged temperature to approximate

the pulsed temperature, there is a systematic underestima-

tion during the transient accumulation of heat before the

QSS is reached. If the pulses are delayed in time by

w = wc
*, with

w�c ¼
T

4
; ð37Þ

the systematic underestimation disappears, and the averaged

calculation will become equal to the average temperature

during the pulses. Both the full-wave rectified sine and the

half-wave rectified sine yield the same wc
* from Eq. 37.

When using the QSSSC to approximate the QSS, there is

a systematic overestimation during the transient before the

whole channel is flushed. If the pulses are delayed in time

by w = wc
*, the systematic overestimation disappears, and

the average of the QSSSC will become equal to the average

of the QSS.
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Fig. 5 E1 as a function of Bi and T 0, for half-wave rectified sine

pulses and x 0 = 0.99. w = w*

Table 1 Full-wave rectified sine, worst case values of E

w E1 max E2 max

0 3.5% 0.15 %

w* 1.5 % 0.05 %

Table 2 Half-wave rectified sine, worst case values of E

w E1 max E2 max

0 40.9% 10.4%

w* 3.3% 0.5%
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Note that in the case where current pulses are applied

(instead of voltage), a more accurate and still simple

description of P*(t) in the electrolyte is possible. Accord-

ing to Eq. 2 the heat production is proportional to the

square of the current density J. Hence it is more accurate to

replace the sinðxt0Þ in Eqs. 35 and 36 by sin2ðxt0Þ: This

leads however to a very similar solution, and makes no

difference in the obtained w�c in Eq. 37.

4 Method

If the total machining time is large enough compared to the

time scales of the temperature evolution, it is a good

approximation to neglect the slow transients and say that

the system is always in QSS. The QSS can be computed

cheaply using the QSSSC. This method is convenient for

easy integration in a larger time scale time stepping cal-

culation, for instance for the calculation of the shape

change of the electrodes. Practically, first the averaged SS

is calculated. Afterwards, by delaying the pulses with w,

the QSS can be calculated in numerical calculations by

time stepping through the delay interval, and the first on-

time. This keeps the number of timesteps to a minimum,

and should provide satisfactory predictions of temperature

during the on-time. If a higher accuracy is needed, one has

to time step also through the off-time, and the second on-

time. For heat transfer by conduction in the electrode, an

optimal delay w* can be used. For the convection in the

flow channel, an optimal wc
* can be used. The pulse delay

for convection and conduction have to be taken the same,

since in the more general system they result from the same

current pulsing. For T� s1, w* & wc
*, hence applying the

pulse delay is generally beneficial to the convection and the

conduction case.

If the time scales of the temperature evolution are not

small enough compared to the total machining time, the

hybrid calculation can be used. This method is analogous

to the QSSSC above, except that the initial state before

applying the pulses is obtained by time stepping (with large

timesteps). Delaying the pulse on-time is advantageous to

minimize hdecay(x,t) and calculating more periods will

provide more accurate results. The worst case errors are not

quantified in this case, and will be higher than with the

QSSSC.

5 Conclusions

As a general method to solve thermal problems during

PECM, the full transient calculation is always an option.

However, this method can be computationally very

expensive, if not practically impossible, if the full detail of

the pulses has to be considered. When the full transient

calculation would be too expensive, simplified methods are

proposed: the hybrid calculation and the QSSSC. The

approximative methods can be performed with a minimum

of computational effort.

Analytical solutions of simplified sub-problems were

analyzed in this work. The assumptions of the models, used

to derive the analytical solutions, are too strict for real life

Electrochemical Machining (ECM) conditions. Neverthe-

less, interesting conclusions can be made.

The analysis is performed for a full-wave rectified sine

and a half-wave rectified sine pulsing. With the spectral

formulation in this work any pulse shape can be investi-

gated. Analytical expressions for optimal values of w are

obtained in this work. Applying these time delays w to the

pulses during the calculations strongly improves the results

of the approximative methods.
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